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 ¶ Abstract 11 

Accurately reconstructing large-scale palaeoclimate patterns from sparse local records is critical for 12 

understanding the evolution of Earth’s climate. Particular challenges arise from the patchiness, uneven 13 

spatial distribution, and disparate nature of palaeoclimatic proxy records. Geochemical data typically 14 

provide temperature estimates via transfer functions derived from experiments. Similarly, transfer functions 15 

based on the climatic requirements of modern taxa exist for some fossil groups, such as pollen assemblages. 16 

In contrast, most ecological and lithological data (e.g. coral reefs and evaporites) only convey information 17 

on broad climatic requirements. Historically, most large-scale proxy-based reconstructions have used either 18 

geochemical or ecological data, but few studies have combined multiple proxy types into a single 19 

quantitative reconstruction. Large spatial gaps in existing proxy records have often been bridged by simple 20 

averaging, without taking into account the spatial distribution of samples, leading to biased temperature 21 

reconstructions. Here, we present a Bayesian hierarchical model to integrate ecological data with 22 

established geochemical proxies into a unified quantitative framework, bridging gaps in the latitudinal 23 

coverage of proxy data. We apply this approach to the early Eocene climatic optimum (EECO), the interval 24 

with the warmest sustained temperatures of the Cenozoic. Assuming the conservation of thermal tolerances 25 

of modern coral reefs and mangrove taxa, we establish broad sea surface temperature ranges for EECO 26 

coral reef and mangrove sites. We integrate these temperature estimates with the EECO geochemical 27 

shallow marine proxy record to model the latitudinal sea surface temperature gradient and global average 28 

temperatures of the EECO. Our results confirm the presence of a flattened latitudinal temperature gradient 29 

and unusually high polar temperatures during the EECO, which is supported by high-latitude ecological 30 

data. We show that integrating multiple types of proxy data, and adequate prior information, has the 31 
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potential to substantially reduce uncertainty in palaeoclimate reconstructions, allowing for unbiased 32 

temperature estimates from sparse data. 33 

Keywords 34 

Palaeoclimate, latitudinal temperature gradients, temperature proxies, Eocene, spatial bias, Bayesian 35 

Introduction 36 

Understanding the long-term evolution of Earth’s climate system and contextualising current global 37 

warming relies on accurate reconstructions of past climates (Royer et al., 2004; Burke et al., 2018; Tierney 38 

et al., 2020). Recent advances in the synthesis of palaeoclimate data (e.g. Veizer and Prokoph, 2015; Hollis 39 

et al., 2019; Song et al., 2019; Grossman and Joachimski, 2022; Judd et al., 2022) are offering 40 

unprecedented insights into the complex and dynamic nature of the Earth’s climate system, yet a 41 

fundamental challenge remains: the proxy record of past climates is spatially incomplete and afflicted by 42 

imperfect preservation and uneven sampling (Judd et al., 2020; Jones and Eichenseer, 2022; Judd et al., 43 

2022). 44 

Whilst geochemical proxy data can provide robust estimates of palaeotemperature at local scales, recent 45 

work has demonstrated that spatial biases in the geochemical proxy record can lead to spurious estimates 46 

of regional (e.g. latitudinal temperature gradients) and global temperatures (Judd et al., 2020; Jones and 47 

Eichenseer, 2022). Principally, this can be driven by two factors: (1) missing data for some regions (e.g. no 48 

high-latitude data); or (2) overrepresentation of other regions (e.g. a high proportion of samples from 49 

tropical areas). The latter can be addressed through the down-sampling of data or restricting analyses to 50 

specific regions (e.g. Song et al., 2019). However, in order to robustly infer regional or global-scale patterns 51 

from an incomplete record, spatial gaps must ultimately be bridged. One common approach, which requires 52 

no additional computation, is the spatial visualisation of proxy-derived temperatures against latitude, 53 

showing broad latitudinal temperature trends (Hollis et al., 2019; Vickers et al., 2021). Interpolation is also 54 

sometimes used to bridge spatial gaps in palaeoclimate data (Taylor et al., 2004), taking advantage of the 55 

autoregressive nature of climatic data: much of the information on the climate of any given location is 56 

contained in the climate data of nearby locations (Reynolds and Smith, 1994). Adding to this, some proxy-57 

based reconstructions use statistical modelling to infer palaeoclimatic patterns. For example, polynomial 58 

regression (Bijl et al., 2009) and cosine functions (Inglis et al., 2020) have been used to reconstruct 59 

latitudinal temperature gradients, and 2D-reconstructions of surface temperatures have been created with 60 

Gaussian process regression (Inglis et al., 2020). These approaches work well for interpolating relatively 61 
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densely-sampled data, but the absence of constraints on the modelled parameters means that such models 62 

can produce unrealistic temperature estimates when extrapolating from sparse data. Statistical modelling in 63 

a Bayesian framework can help overcome this problem by requiring the explicit specification of priors for 64 

the model parameters, which can be used to express physical constraints (Chandra et al., 2021). 65 

Spatial gaps in the palaeoclimate record can also be addressed through the integration of additional data. 66 

For example, lithological and fossil data can be used to infer past climatic conditions based on analogous 67 

modern sediments (Chandra et al., 2021), or based on the premise that the climatic requirements of ancient 68 

taxa, biological traits, or ecological communities were similar to those of their nearest modern relatives 69 

(Peppe et al., 2011; Royer, 2012; Salonen et al., 2019). Despite this potential, the integration of geochemical 70 

proxy data with other sources of information (e.g. ecological data) has rarely been realised in a rigorous, 71 

quantitative framework (Burgener et al., 2023). 72 

Here, we present a novel Bayesian hierarchical model that combines quantitative proxies and ecological 73 

constraints into a fully quantitative model of the latitudinal gradient of sea surface temperatures, bridging 74 

spatial gaps in sparsely sampled climate data. This model expands upon existing, spatially explicit 75 

palaeoclimatic reconstructions by allowing for the integration of (1) prior information based on physical 76 

principles and the observed modern sea surface temperature distribution, and of (2) geochemical and 77 

ecological climate proxies in a common, quantitative framework. We use a generalised logistic function to 78 

accurately infer the shape of the temperature gradient despite a patchy latitudinal coverage, and test the 79 

robustness of this method using down-sampled, simulated temperature gradients. 80 

We apply this model to the record of the early Eocene climatic optimum (EECO), combining a compilation 81 

of geochemical proxies (Hollis et al., 2019), mangrove communities (Popescu et al., 2021), and coral reefs 82 

(Zamagni et al., 2012), using a nearest-living-relative approach (e.g. Greenwood et al., 2017) to establish 83 

broad temperature ranges for the ecological data. We choose the EECO to demonstrate the application of 84 

the model due to its significance as the interval with the warmest sustained temperatures of the Cenozoic 85 

(Pross et al., 2012), rendering it a potential analogue for extreme climate warming scenarios (Burke et al., 86 

2018). Our integrative approach allows us to shed new light on the long-standing dispute on the steepness 87 

of the early Eocene temperature gradient (Table 1; Sloan and Barron, 1990; Markwick, 1994; Huber and 88 

Caballero, 2011; Tierney et al., 2017; Inglis et al., 2020). 89 

Table 1: Inferred latitudinal sea surface temperature (SST) gradients for the early Eocene (EE) or the EECO, 90 

as shown in earlier, proxy-based studies. For comparison, a gradient derived from an atmosphere-ocean 91 

general circulation model (GCM) ensemble is also shown. 92 
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Source Time Gradient Type_of_gradient Model Proxy_system 

Bijl et al. (2009) EE 7 equator - polar 

circle 

2𝑛𝑑 order 

polynomial 

𝑇𝐸𝑋86, 𝑈𝐾37
𝐾′ 

Keating-Bitoni et 

al. (2011) 

EECO 13 equator - polar 

circle 

2𝑛𝑑 order 

polynomial 

𝑇𝐸𝑋86, MBT/CBT, 

𝛥47, Mg/Ca, 𝛿18𝑂 

Tierney et al. (2017) EE 12 equator - polar 

circle 

Gaussian 

function 

𝑇𝐸𝑋86 

Cramwinckel et 

al. (2018) 

EECO 21 (±1) equator - deep 

water 

- 𝑇𝐸𝑋86, 𝛥47, 

Mg/Ca, 𝛿18𝑂, 

deepwater 𝛿18𝑂 

Evans et al. (2018) EE 20 (±3) tropics - deep 

water 

- 𝛥47, deepwater 

Mg/Ca 

Pross et al. (2012), as 

shown in Tierney et 

al. (2017) 

EE 26 equator - polar 

circle 

climate model 

ensemble 

(GCM) 

none (GCM 

simulations) 

Materials & Methods 93 

Geochemical data 94 

Geochemical climate proxy data were extracted from a latest Paleocene and early Eocene compilation 95 

(Hollis et al., 2019). This compilation provides data on four different geochemical proxies for 96 

reconstructing seawater temperature: δ18O, Δ47, Mg/Ca and TEX86. For our analyses, this dataset was 97 

restricted to the EECO (defined as 53.8 – 49.1 Ma) and samples from the continental shelf. Recrystallised 98 

δ18O samples were also excluded as secondary diagenetic calcite precipitated after deposition can bias 99 

isotope measurements and offset temperature values (Schrag, 1999). This filtering resulted in most δ18O 100 

samples being excluded from the dataset (retaining 8 out of 152). After data filtering, 308 geochemical 101 

proxy samples from 23 locations remained. For a detailed description of each proxy see Hollis et al. (2019). 102 

Ecological data 103 

Coral reefs. Today, shallow warm-water coral reefs are limited to tropical and subtropical latitudes (~34° N 104 

– 32° S), with minimum sea surface temperature tolerances (~18°C) being the primary constraint on this 105 

distribution (Johannes et al., 1983; Kleypas et al., 1999; Yamano et al., 2001). As coral reefs reside at the 106 

upper thermal limit of the oceans today, their maximum sea surface temperature tolerance is less well-107 
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constrained, with some studies suggesting up to 35.6°C in the geological past (Jones et al., 2022). 108 

Nevertheless, coral reefs have frequently been recognised as tracers of past (sub-)tropical conditions 109 

(Ziegler et al., 1984; Kiessling, 2001). During the Eocene, coral communities and reefs expanded across 110 

tropical and temperate latitudes, with communities found up to palaeolatitudes of 43 ° N (Zamagni et al., 111 

2012). Using a compilation of Paleocene – early Eocene coral reefs and community localities (Zamagni et 112 

al., 2012), we generated quantitative sea surface temperature estimates for the ECCO. To do so, we 113 

extracted localities from the compilation that are inferred to be Ilerdian (early Eocene) coral reefs, and that 114 

could be confidently assigned to the EECO. We excluded coral knobs and coral-bearing mounds which 115 

might have broader climatic limits than warm-water coral reef ecosystems. This filtering resulted in four 116 

unique coral reef localities remaining for the EECO, all of which conform to the modern latitudinal range 117 

of coral reefs (<34° N). Subsequently, we used statistically derived temperature limits (minimum = 21°C, 118 

average = 27.6°C, maximum = 29.5°C) from the published literature (Kleypas et al., 1999) to define a 119 

normal probability distribution of potential temperature values for coral reef localities. This normal 120 

probability distribution was defined with a mean of 27.6 and a standard deviation of 2.125, placing 97.5% 121 

of the probability density above the minimum. As the distribution of modern corals is skewed towards 122 

warmer temperatures, this approach results in 16.5% of the probability being placed on temperatures > 123 

29.5°C, allowing for the possibility that Eocene coral reefs were adapted to warmer conditions than present-124 

day coral reefs. 125 

Mangroves. Mangroves are distributed throughout the tropics and subtropics today. While factors besides 126 

sea surface temperatures (SST) influence the distribution of mangroves, empirical, lower temperature limits 127 

have been established for the genera Avicennia (15.6°C) and Rhizophora (20.7°C) (Quisthoudt et al., 2012). 128 

Both Avicennia and members of the Rhizophoraceae family were widespread and co-occurred across 129 

tropical and temperate latitudes in the early Eocene. Only Avicennia, however, occurred at polar latitudes 130 

(Suan et al., 2017; Popescu et al., 2021). Assuming that Eocene members of these mangrove taxa conform 131 

to similar climatic requirements as their modern relatives, the presence and absence of Avicennia and 132 

Rhizophoraceae pollen can be used as a palaeotemperature indicator. For this analysis, published mangrove 133 

occurrence data were taken from Popescu et al. (2021), and converted to quantitative temperature estimates. 134 

From this data, we identify two types of pollen assemblages which we ascribe different temperature 135 

distributions: 136 

1) Avicennia-only assemblages (𝑛 = 2): the absence of Rhizophoraceae is indicative of temperatures 137 

being between 15.6°C (lower temperature limt of Avicennia) and 20.7°C (lower temperature limit 138 

of Rhizophora). However, a value of 22.5°C is ascribed as the upper temperature limit here as 139 

Rhizophora is rare below this temperature. We define the Avicennia-only temperature distribution 140 

as a normal distribution with a mean of 19.05 and a standard deviation of 1.725, resulting in 95% 141 

of the probability density being placed within the temperature limits. 142 
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2) Avicennia and Rhizophoraceae assemblages (𝑛 = 5): the presence of both groups suggests that 143 

the locality should have a minimum temperature of 20.7°C (lower temperature limit of 144 

Rhizophora). As the upper thermal limits of Aviciennia and Rhizophora are not well established 145 

in Quisthoudt et al. (2012), we assign the same maximum temperature limits (29.5°C) as coral 146 

reef localities, because mangroves are also widely distributed throughout tropical regions. 147 

Consequently, we define the temperature distribution for this locality as a normal distribution 148 

with a mean of 25.1 and a standard deviation of 2.2, with 95% probability density within the 149 

temperature limits. 150 

 

Figure 1: Palaeogeographic distribution of the geochemical and ecological data compilation used in this 

study.  Map is presented in the Robinson projection (ESRI:54030). 

Palaeogeographic reconstruction 151 

The palaeogeographic distribution of geochemical and ecological data was reconstructed using the Merdith 152 

et al. (2021) plate rotation model via the palaeoverse R package (version 1.2.0, Jones et al., 2023). The 153 

midpoint age of the EECO (51.2 Ma), along with the present-day coordinates of geochemical and ecological 154 

data, were used for palaeogeographic reconstruction. 155 

Bayesian framework 156 

Model structure. We model the mean temperature (𝜇) at location 𝑗 as a function of absolute latitude 157 

(𝑎𝑏𝑠(𝑙)) with a logistic regression (also known as “growth curve” or “Richard’s curve”) of the form: 158 

𝜇𝑗 ∼ 𝑁(𝜈𝑗 , 𝜎),  (1) 159 
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𝜈𝑗 = 𝐴 +
𝐾 − 𝐴

𝑒𝐵(𝑎𝑏𝑠(𝑙𝑗)−𝑀)
 ,      𝑗 = 1, . . . , 𝑛,  (2) 160 

where 𝐴 and 𝐾 denote the lower and upper asymptote, respectively, 𝑀 specifies the latitude of maximal 161 

growth, i.e. the latitude around which temperature falls most steeply with latitude, 𝐵 denotes the growth 162 

rate, 𝜎 denotes the residual standard deviation, and 𝑛 denotes the number of locations. 163 

We infer 𝜇𝑗 from 𝑚 individual temperature observations 𝑡𝑖=1,...𝑚, derived from geochemical data, at 164 

location 𝑗 as 165 

𝑡𝑖,𝑗 ∼ 𝑁(𝜇𝑗 , 𝜎𝑗),      𝑖 = 1, . . . , 𝑚,  (3) 166 

where 𝑚 is the number of observations at each location, and 𝜎𝑗 is the estimated standard deviation of the 167 

temperatures at location 𝑗. 168 

Similarly, 𝜇𝑗 is inferred for locations with ecological proxies from the associated normal temperature 169 

distributions with a given mean and standard deviation, 𝑡𝜇,𝑗 and 𝑡𝜎,𝑗, as 170 

𝑡𝜇,𝑗 ∼ 𝑁(𝜇𝑗, 𝑡𝜎,𝑗).  (4) 171 

This structure implies that 𝜇𝑗 is not fixed at the mean proxy temperature at location 𝑗,  but is drawn towards 172 

the overall logistic regression curve, i.e. towards 𝜈𝑗. The pull towards 𝜈𝑗 tends to be strong when 𝑚 is low, 173 

when the observations 𝑡𝑖=1,...,𝑚, 𝑗 are scattered, i.e. 𝜎𝑗 is high, and/or when the overall standard deviation 𝜎 174 

is low. In practice, this has the desirable consequence that locations with few observations and large 175 

temperature differences between observations have less influence on the overall regression than well-176 

sampled locations with consistent reconstructed temperatures. 177 

Priors. In a Bayesian framework, priors need to be placed on the unknown parameters of a model. We 178 

placed weakly informative, conjugate inverse-gamma priors on 𝜎 and 𝜎𝑗=1,..𝑛: 179 

𝜎 ∼ √𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(𝛼 +
𝑛

2
, 𝛽 + 0.5 × (𝜇𝑗 − 𝜈𝑗)) ,      𝑗 = 1, . . . , 𝑛,  (5) 180 

𝜎𝑗 ∼ √𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(𝛼 +
𝑚

2
, 𝛽 + 0.5 × (𝑡𝑖,𝑗 − 𝜇𝑗)) ,      𝑖 = 1, . . . , 𝑚,      𝑗 = 1, . . . , 𝑛.  (6) 181 

We set 𝛼 = 𝛽 = 1, allowing these priors to be quickly overwhelmed by the data as 𝑛 and 𝑚 increase, as 182 

we have little a priori knowledge of these parameters. 183 
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In contrast, we put informative priors on the regression coefficients 𝐴, 𝐾, 𝑀 and 𝐵, based on physical 184 

principles, and loosely based on the modern climate system: 185 

A. Predicted seawater surface temperatures are not allowed to be << −2∘𝐶, the freezing point of sea water. 186 

The highest prior density of 𝐴 is placed around 0∘𝐶, and it slowly tapers off towards higher temperatures. 187 

This shape is achieved by placing a skew-normal prior on the lower asymptote, specified as 188 

𝐴 ∼ 𝑆𝑁(𝜉 = −3.0,𝜔 = 12, 𝛼𝑆𝑁 = 30),  (7) 189 

where 𝜉, 𝜔, and 𝛼𝑆𝑁 are the location, scale and shape parameters. 190 

K. Input of solar energy decreases from the tropics to the poles. Hence, the latitudinal temperature gradient 191 

is broadly negative, i.e. temperature decreases with absolute latitude. This is achieved by setting 𝐾 ≥ 𝐴. 192 

The prior on the upper asymptote 𝐾 is a truncated normal distribution with the mean set to 𝐾 of the modern 193 

SST gradient, with a broad standard deviation: 194 

𝐾 ∼ 𝑇𝑁(𝜇𝑇𝑁 = 28, 𝜎𝑇𝑁 = 10, 𝛼𝑇𝑁 = 𝐴, 𝛽𝑇𝑁 = ∞)  (8) 195 

The distribution is truncated to the left at 𝛼𝑇𝑁 = 𝐴, but not truncated to the right (𝛽𝑇𝑁). 196 

M. The steepness of the gradient is presumed to be highest in mid-latitudes; this is expressed with a normal 197 

prior on 𝑀 with the mean set to 42, i.e. 𝑀 of the modern SST gradient, and a moderately wide standard 198 

deviation of 10: 199 

𝑀 ∼ 𝑁(42,10)  (9) 200 

B. The steepness or growth rate 𝐵 of the gradient is constrained to be ≥ 0 and to not be exceedingly high, 201 

as oceanic and atmospheric heat transfer is bound to limit very abrupt SST changes across latitudes on a 202 

global scale. A gamma-distributed prior of the form 203 

𝐵 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝐺 = 4.3, 𝛽𝐺 = 30)  (10) 204 

was placed on 𝐵. The shape and rate parameters 𝛼𝐺 and 𝛽𝐺 were chosen such that the highest prior density 205 

is at 𝐵 of the modern SST gradient, 0.11. We informed the prior distributions on 𝑀 and 𝐵 based on a 206 

provisional model run with the modern SST data. 207 

Model validation 208 

To test whether our logistic regression model can adequately describe different latitudinal temperature 209 

gradients at various sample sizes, we generated four idealised gradients that emulate potential climatic states 210 

throughout Earth’s geological history: extreme icehouse, icehouse, greenhouse, and extreme greenhouse 211 
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(Frakes et al., 1992). We then randomly sampled (1,000 iterations) these gradients using increasing sample 212 

sizes (5, 10, and 20) and reconstructed the latitudinal temperature gradient using our model for each of 213 

these sample sizes and gradient types. Using the same idealised gradients, we also tested whether our model 214 

could accurately reconstruct latitudinal temperature gradients using the palaeogeographic distribution of 215 

Eocene samples (n = 34), providing an empirical, exemplary distribution that captures both limited sample 216 

size and skewed geographic origins of samples. To evaluate how well the model performed in 217 

reconstructing the idealised gradients from limited sampling, we calculated the coefficient of determination 218 

(𝑅2) for Bayesian regression models (Gelman et al., 2019). For every iteration from the posterior, we 219 

intercepted the modelled and the idealised gradient in intervals of 1° latitude and calculated the 𝑅2 based 220 

on these values. We report the median, and 95% credible intervals (CI) of the resulting 𝑅2 values. Here and 221 

in all other instances, the 95% CI refer to the interval between the 2.5% point and the 97.5% point of the 222 

samples or sampled posterior distribution. 223 

To test whether our model can accurately depict the shape of the modern sea surface temperature gradient, 224 

and to facilitate comparison with the Eocene gradient, we applied our model to annual sea surface mean 225 

temperatures from Bio-Oracle (Assis et al., 2018), aggregated to a 1∘ × 1∘ raster (n = 46,131). The 𝑅2 for 226 

the modern gradient was calculated as above (Gelman et al., 2019), comparing the modelled gradient and 227 

the empirical temperature averages in 1° latitude bins. Only the medians are reported for the modern 228 

gradient, as the 95% credible intervals are extremely narrow due to the high precision of the posterior 229 

estimates. 230 

To reconstruct the idealised gradients and the modern gradient, we used a simplified, non-hierarchical 231 

version of our model, as every location is associated with only one temperature value, making the 232 

hierarchical structure superfluous. To achieve this, we substituted temperature (𝑡𝑗) for 𝜇𝑗 in Equation 1 and 233 

Equation 5. 234 

Parameter estimation 235 

We estimated the posterior distributions of the model parameters using a Markov chain Monte Carlo 236 

(MCMC) algorithm, written in R. Specifically, we sampled the unknown parameters 𝐴, 𝐾, 𝑀 and 𝐵 with 237 

Metropolis-Hastings, and used Gibbs sampling to estimate all other unknown parameters (see Gilks et al., 238 

1995; Gelman et al., 2013). Posterior inference on the modern gradient is based on four chains with 60,000 239 

iterations each, 10,000 of which were discarded as burn-in. Every 10th iteration was retained, resulting in 240 

a total of 20,000 iterations with low autocorrelation. The re-sampled, simulated gradients were modelled in 241 

one chain with 10,000 iterations for each of the 1,000 random samples. 5,000 iterations each were discarded 242 

as burn-in, and every 25th iteration was kept, resulting in a total of 200,000 iterations across all 1,000 model 243 
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runs. For the simulated gradients with an Eocene sampling distribution, a single chain with 250,000 244 

iterations was used, thinned to 10,000 iterations after burn-in. For the Eocene model, we ran four chains 245 

with 600,000 iterations each, discarding 100,000 as burn-in and keeping every 100th iteration, as the 246 

hierarchical model structure results in higher autocorrelation of the chains. The Eocene posterior inference 247 

is thus based on a total of 20,000 iterations with low autocorrelation (effective multivariate sample size for 248 

𝐴, 𝐾, 𝑀 and 𝐵 is > 18,000). Trace plots of the MCMC chains indicate convergence and good mixing of the 249 

chains (Fig. S1). 250 

Processing of model results 251 

modelled sea surface temperature estimates were generated with Equation 2, calculating the sea surface 252 

temperatures at any latitude with the parameter estimates of each iteration from the posterior. The median 253 

and 95% CI of temperatures where then taken from all temperature estimates obtained at the latitudes of 254 

interest. 255 

The latitudinal gradient is calculated as the difference between the modelled temperature at the equator (0° 256 

latitude) and at the poles (90° absolute latitude). To facilitate comparison with earlier estimates, we also 257 

calculate the gradient with the temperature at the polar circle (66.6° absolute latitude) being used instead of 258 

the temperature at the poles. Given the sigmoidal shape of the modern as well as the Eocene gradient (see 259 

Fig. 4), these results are broadly comparable to a gradient inferred from the zonal average of equatorial and 260 

high-latitude temperatures, as has been done in some earlier studies (Evans et al., 2018). 261 

Differences between Eocene and modern temperatures at a certain latitude were calculated by randomly 262 

pairing all iterations of the posterior from the Eocene and modern temperature gradient model, calculating 263 

the Eocene and modern temperature using the respective iterations, taking the difference, and then 264 

calculating the median (95% CI) from all pairs of iterations. 265 

Global average temperatures with 95% credible intervals were calculated by taking the weighted mean of 266 

the median (95% CI) of temperature estimates in 1° latitudinal bins. The weights were set to the proportion 267 

of global surface area in each latitudinal bin, i.e. decreasing with increasing latitude as: 268 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑠𝑖𝑛(𝛼1,𝑖) − 𝑠𝑖𝑛(𝛼2,𝑖),  (11) 269 

where 𝛼1 is the upper, and 𝛼2 is the lower latitudinal boundary of bin 𝑖, i.e. we approximated the shape of 270 

the globe as a spheroid. 271 
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Results 272 

Model validation 273 

 

Figure 2: Model reconstructions of simulated latitudinal temperature gradients at various sample sizes. 

Each column depicts a different reconstruction for given sample sizes: 5, 10, 20, and 34 (latitudes of 

EECO samples). Each row depicts a different simulated latitudinal temperature gradient that represents 

idealised climatic states: extreme icehouse, icehouse, greenhouse, and extreme greenhouse. The black 

line illustrates the simulated gradient. The blue line depicts the reconstructed gradient represented by 

the median sea surface temperature value estimated from 1,000 model runs with different random 

samples (first three columns), and a single run with the EECO latitudinal sampling distribution (fourth 

column). The blue shadings depict the 90%, 95%, and 99% credible intervals. Bold black text within 

each panel depicts the coefficient of determination (𝑅2) for estimating goodness of fit between the 

simulated and modelled gradient. The median (50%) 𝑅2 value along with the 95% credible intervals 

from all model runs are shown. Each gradient is depicted in absolute latitude. 

 274 
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Figure 3: Present-day latitudinal temperature gradient. The present-day empirical latitudinal 

temperature gradient (median sea surface temperature) is depicted as a black line, and the gradient 

estimated by the Bayesian model is shown in turquoise. Grey points depict the individual cell values of 

the Bio-ORACLE grid of mean sea surface temperatures, which were used to infer the empirical and 

the modelled gradient. 

Our Bayesian model is able to accurately model a range of idealised temperature gradients, ranging from 275 

extreme icehouse to ‘super greenhouse’ scenarios (Fig. 2). Random latitudinal sampling results in highly 276 

accurate reconstructions at a sample sizes as low as 10 for the icehouse scenarios (95 % CI of 𝑅2 > 0.9). 277 

Greenhouse scenarios require additional samples to accurately predict high-latitude temperatures. This is 278 

because in the absence of high-latitude samples, the modelled gradient is heavily influenced by the priors, 279 

which we based on the modern, the only empirically known latitudinal temperature gradient. A sampling 280 

distribution resembling that of the early Eocene data set used in this study allows for a highly accurate 281 

reconstruction of even the extreme greenhouse scenario (95 % CI of 𝑅2 > 0.95). 282 

The average, modern temperature gradient can be closely approximated with our model when using the full 283 

modern SST dataset (Fig. 3); almost all of the variation in the empirical median temperatures in bins of 1° 284 

absolute latitude is explained by the modelled gradient (𝑅2 = 0.997). The empirical gradient spans 29.3°C 285 

from the equator to the poles, the modelled gradient is only slightly higher at 29.6°C. The modern, global 286 

mean temperature (GMST) based on our modelled, median gradient is 17.6°C, very similar to the GMST 287 

derived from the empirical median gradient (17.5°C). 288 
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EECO reconstruction 289 

The modelled Eocene temperature gradient is starkly different from the modern (Fig 4). Modelled, median 290 

equatorial temperatures are 4.2 (95% CI: 0.2 – 8.3)°C higher for the EECO, and polar temperatures are 25.0 291 

(17.0 – 29.1)°C higher. This results in a flattened latitudinal temperature gradient of 9.0 ( 2.5 – 17.8)°C for 292 

the EECO, as opposed to 29.6°C for the modern. To facilitate the comparison with latitudinal gradients 293 

reported in the literature, which sometimes do not report temperatures at very high latitudes, we report also 294 

the EECO gradient between the equator and the modern-day polar circle (66.6°), which is slightly lower at 295 

7.8 ( 2.2 – 13.7)°C. 296 

The high variability of EECO palaeotemperature proxies, particularly in the mid-latitudes, and the scarcity 297 

of high-latitude data, result in substantial uncertainties in the modelled temperature gradient. This is 298 

reflected in the residual standard deviation (𝜎) of the EECO gradient – 4.9 (3.8 – 6.5)°C – which is more 299 

than double the 𝜎 for the modern gradient, 2.2. This signifies that the early Eocene data does not fit as well 300 

to the logistic latitudinal gradient model, which can also be seen from the drastic departure of some of the 301 

proxy data from the gradient estimates (Fig. 4). 302 

The early Eocene GMST is estimated at 28.7 (26.7 – 30.7)°C, 11.1°C higher than the modern. A model run 303 

excluding the ecological proxies increases the GMST by 1.6 (-1.8 – 4.8)°C. The median latitudinal gradient 304 

is similar when excluding the ecological proxies, with a median of 9.2°C, but with a 20% wider 95% CI 305 

(Fig. S2). This indicates that the ecological proxy data are broadly in agreement with the geochemical 306 

proxies, while providing additional constraints on the shape of the early Eocene temperature gradient. 307 

Due to the limited spatial coverage of the early Eocene proxy record, and due to the added model complexity 308 

of simultaneously estimating a model across both hemispheres, we pooled the proxy data across both 309 

hemispheres. Applying the model separately within each hemisphere results in substantial differences in 310 

hemispherical, average temperatures, with the Southern Hemisphere being warmer by 6.5 (3.5 – 9.4)°C. 311 

The inferred latitudinal gradient is somewhat steeper in the Northern Hemisphere (steeper by 4.8°C, 312 

although the 95% CI spans -6.6 – 14.3°C), but the large uncertainties associated with both gradients, and 313 

the lack of polar proxy data in the Southern Hemisphere preclude a more precise statement (see Fig. S3). 314 
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Figure 4: Estimates of the median, latitudinal sea surface temperature gradients of the early Eocene 

climatic optimum (purple line) and of the present-day (turquoise), both estimated with the Bayesian 

model. The purple ribbon (shading) depict the 95% credible interval of the Eocene gradient, the 

uncertainty of the modern gradient is too low to be visible. Points within the plot depict the 

geochemical (e.g. TEX86) and ecological (e.g. mangroves) data. Geochemical data are plotted by their 

point estimate temperature value. Ecological data are plotted at the mean temperature values of their 

respective normal distributions. 

Discussion 315 

Improved estimation of latitudinal and global palaeotemperatures 316 

Our results show that our Bayesian model can be used to reconstruct different types of latitudinal SST 317 

gradients from proxy data, even with small sample sizes (n = 10 – 20) and patchy sampling distributions 318 

(Fig. 2). This is an advancement over previously used linear, quadratic or Gaussian approximations (e.g. 319 

Bijl et al., 2009; Tierney et al., 2017), which can fit only specific types of gradients. As such, our model 320 

presents an alternative to non-parametric methods for inferring latitudinal temperature gradients, which are 321 

sometimes favoured as they can flexibly follow the shape of an unknown temperature gradient (e.g. Zhang 322 

et al., 2019; Jones and Eichenseer, 2022). However, when used for interpolation or prediction outside the 323 

proxy range, non-parametric methods such as Gaussian process regression strictly respond to the data (e.g. 324 

Inglis et al., 2020). This means that the idiosyncrasies of a patchy proxy record, potentially afflicted with 325 
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measurement errors, calibration errors, and palaeogeographic and temporal uncertainty, dictate the 326 

reconstruction of large-scale climate patterns, without the option of including additional knowledge 327 

(e.g. that latitudinal temperature gradients should be broadly negative). 328 

In contrast, our Bayesian, parametric model allows for the inclusion of informative priors on the model 329 

parameters. The modelled sea surface temperature gradient thus does not strictly follow the proxy data, but 330 

instead represents a compromise between the data and prior knowledge. In the EECO example (Fig. 4), the 331 

inclusion of informative priors improves the prediction of sea surface temperatures in the unsampled, very 332 

high latitudes: Notice that the upper limit of the credible interval does not increase beyond the range of the 333 

data, whereas unconstrained approaches such as splines, Gaussian processes or even standard linear 334 

regression could lead to unrealistically high upper bounds in this case (see Rasmussen and Williams, 2004). 335 

Prior information on the shape of latitudinal temperature gradients on Earth exists for all geological time 336 

periods. For example, the greater amount of solar radiation per unit area in low latitudes causes Earth’s 337 

latitudinal temperature gradient to be broadly negative (Beer et al., 2008). The ease with which such prior 338 

information can be integrated is a major advantage of our method, as the shape of the modelled gradient is 339 

controlled by four parameters which clearly relate to its magnitude, steepness and the latitude of its greatest 340 

steepness. 341 

Palaeoclimate reconstructions are often summarised as global mean surface temperatures (GMST), 342 

providing a standardised metric for characterising the state of the Earth’s climate (Royer et al., 2004; Inglis 343 

et al., 2020). The calculation of global mean surface temperatures directly from sparse proxy data is 344 

susceptible to bias (Jones and Eichenseer, 2022). By modelling the temperature variation across latitudes, 345 

a complete temperature distribution along a latitudinal axis can be obtained, filling in gaps in the proxy 346 

record through inter- or extrapolation. This eliminates the common problem that specific climate zones 347 

dominate the proxy record. Reconstructing the GMST directly from the proxies would lead to an estimate 348 

biased towards the well-sampled latitudes. Calculating zonal averages alleviates this problem, but this 349 

method relies on comprehensive latitudinal coverage (Inglis et al., 2020). Instead, our method allows for 350 

intersecting the modelled temperature gradient at narrow latitudinal intervals, even when significant 351 

latitudinal gaps exist. Weighting the temperatures of those latitudinal intervals by area results in GMST 352 

estimates without intrinsic spatial biases. We anticipate that this improved method may significantly alter 353 

Phanerozoic, proxy-based temperature curves, which have often been directly calculated from the proxy 354 

record (Royer et al., 2004; Veizer and Prokoph, 2015). This is particularly relevant for the early Mesozoic 355 

and older intervals, for which the spatial coverage is generally poor due to the absence of data from ocean 356 

drilling sites (Jones and Eichenseer, 2022). 357 
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The role of ecological constraints in palaeoclimate reconstructions 358 

Our results further exemplify how incorporating quantified ecological temperature constraints can provide 359 

more precise temperature reconstructions than geochemical proxies alone, adding to the advances in 360 

palaeoclimate reconstructions achieved by integrating lithological data (Scotese et al., 2021; Burgener et 361 

al., 2023). Combining the occurrences of climate-sensitive plant communities (Greenwood and Wing, 362 

1995), reptiles (Markwick, 2007), leaf shapes (Peppe et al., 2011), with geochemical proxies offers 363 

substantial potential for improving quantitative palaeoclimate reconstructions across the Phanerozoic. Our 364 

modelling framework offers a straightforward, efficient way of integrating ecological climate data with 365 

other proxy data: The hierarchical model structure accounts for variation of temperature estimates from 366 

proxies at individual localities, which is treated equivalent to the uncertainty associated with the ecological 367 

temperature proxies. A local temperature estimate, based on multiple geochemical proxies, thus has the 368 

same weight as a local temperature estimate obtained from the occurrence of a climate-sensitive plant 369 

community, whilst preserving the uncertainty associated with each estimate. The model could easily be 370 

extended to include uncertainties on individual geochemical proxy data, or to variably weight proxy records 371 

classified as more or less reliable. 372 

Our approach for deriving fully quantitative climate reconstructions from ecological data is borrowed from 373 

nearest living relative methods, commonly employed in terrestrial, Cenozoic climate reconstructions 374 

(Fauquette et al., 2007; Pross et al., 2012). One major limitation to these methods is that the thermal 375 

preferences of taxa may have changed over time. More significantly, in the early Eocene, sea surface 376 

temperatures may have reached heights unknown in the modern world, and nearest living relative methods 377 

based on the modern are inherently unable to predict such elevated temperatures. This is especially true for 378 

taxa that inhabit the warmest part of the ocean today, e.g. coral reefs (Kleypas et al., 1999). Although coral 379 

reefs are threatened by warming sea surface temperatures today (Hoegh-Guldberg, 2011), it is conceivable 380 

that Eocene reef corals were adapted to a warmer climate. The fossil record indicates that reef development 381 

may have been stunted in the early Eocene, with few early Eocene coral reefs occurring in low latitudes 382 

(Zamagni et al., 2012). The absence of coral reefs in higher latitudes in the early Eocene could be due to 383 

requirements in irradiance, rather than temperature (Muir et al., 2015). Tropical temperatures predicted by 384 

the geochemical proxy record indicate hotter-than-modern tropical temperatures for the early Eocene 385 

(Fig. S2), suggesting that the modern climate range of coral reefs may underestimate the early Eocene 386 

thermal niche for coral reefs. We have tried to account for that possibility by widening the temperature 387 

probability distribution for coral reefs, but the predicted temperatures for the reef and mangrove sites still 388 

lie below the temperatures indicated by the geochemical proxy record (Fig. 4, Fig. S2). 389 
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Early Eocene climate 390 

The geochemical proxy record and ecological data indicate that the latitudinal SST gradient of the early 391 

Eocene climatic optimum was significantly shallower than the modern (Huber and Caballero, 2011), but 392 

beyond that, there is little agreement. Earlier, reconstructed early Eocene and EECO SST gradients range 393 

from 7 – 21°C (Table 1); a more recent reconstruction that includes terrestrial air and sea surface 394 

temperatures arrives at a gradient of ~13°C (Inglis et al., 2020). Our polar circle to equatorial gradient 395 

estimate is lower than most previous estimates at 7.8°C, although the 95% credible interval extends up to 396 

13.7°C and thus overlaps earlier estimates based on shallow water proxies. The confirmation of a very flat 397 

gradient by both geochemical and ecological shallow water data indicates that inferred SST gradients based 398 

on tropical, shallow water and deep water samples (Cramwinckel et al., 2018; Evans et al., 2018) may 399 

overestimate the SST gradient of the early Eocene greenhouse world. 400 

Discrepancies between earlier, proxy-based reconstructions and our modelling results are most pronounced 401 

in latitudes beyond the polar circle, as earlier approaches (e.g. Tierney et al., 2017) predict almost linearly 402 

decreasing SSTs towards the poles, whereas our median prediction suggests only a slight decrease beyond 403 

the polar circle. The scarcity of temperature records in this range leads to widening credible intervals in our 404 

prediction, including the possibility of stronger temperature decreases. Polar temperature estimates from 405 

our model are thus conservative in that they admit large uncertainty where data is absent, which is desirable. 406 

However, the presence of high proxy-derived temperature estimates at ~ 60° latitudes forces the modelled 407 

median temperature curve to be too high at ~ 24°C, relative to the temperatures indicated by the high-408 

latitude mangrove communities (15.6 - 22.5°C). In contrast, the extrapolated polar temperatures of most 409 

previous proxy-based models are likely too low, given the abundance of ecological data indicating 410 

temperate or subtropical high-latitude climates during the EECO (Pross et al., 2012; Popescu et al., 2021). 411 

The very high variability of the proxy record in mid-latitudes results in large uncertainties on the shape of 412 

temperature gradient and on the GMST. Biases and errors in the proxy reconstructions likely contribute to 413 

the observed variability, as geochemical proxies reflect many other factors besides seawater temperature 414 

(Hollis et al., 2019). Despite excluding δ18O measurements from recrystallised fossils, systematic offsets 415 

remain between mostly warm temperatures derived from TEX86, and cooler temperatures derived from 416 

δ18O, Δ47, and the ecological proxies. Seasonality (Keating-Bitonti et al., 2011) and temporal changes within 417 

the EECO (Westerhold et al., 2018) may also contribute to the large variability of the EECO proxy data. 418 

Recent, marine GMST estimates of the EECO and of the early Eocene range from 23.4 – 37.1°C, with the 419 

lowest GMSTs being derived from δ18O, and the higher estimates including TEX86 (Inglis et al., 2020). 420 

Many studies include both marine and terrestrial proxies to derive GMST estimates, but despite great 421 
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differences in proxy selection and in the calculation of global average temperatures, many recent estimates 422 

fall in the range of 27 - 29.5°C (Hansen et al., 2013; Caballero and Huber, 2013; Cramwinckel et al., 2018; 423 

Zhu et al., 2019), similar to our median GMST estimate of 28.7°C. 424 

Conclusions 425 

The Bayesian hierarchical model presented here is able to reconstruct latitudinal gradients from both 426 

geochemical and ecological proxy data, while reflecting the uncertainty associated with the ecological 427 

temperature proxies, and accounting for the variation of multiple temperature estimates at individual 428 

localities. Using informative prior information allows for accurate temperature reconstructions from records 429 

with geographically incomplete sampling. By providing temperature estimates across the entire latitudinal 430 

range, this method also facilitates the reconstruction of unbiased global average temperatures. Application 431 

of our model to the EECO suggests that latitudinal sea surface temperature gradients were shallower than 432 

estimated by most previous proxy-based studies. High-latitude pollen records support this interpretation. 433 

Our GMST estimate is in good agreement with most existing estimates, indicating that broadly accurate 434 

GMST reconstructions are possible even with substantial deviations in the shape of the latitudinal 435 

temperature gradient. Our new method opens the door for improving the accuracy of proxy-based 436 

palaeoclimate reconstructions and Phanerozoic temperature curves, particularly in intervals with a patchy 437 

and unenvenly sampled record. Finally, the flexibility of our approach means that estimates can be 438 

efficiently updated when new data are made available. 439 
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